Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 10661-10670, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38377517

RESUMO

Chiral covalent organic frameworks (COFs) hold considerable promise in the realm of heterogeneous asymmetric catalysis. However, fine-tuning the pore environment to enhance both the activity and stereoselectivity of chiral COFs in such applications remains a formidable challenge. In this study, we have successfully designed and synthesized a series of clover-shaped, hydrazone-linked chiral COFs, each with a varying number of accessible chiral pyrrolidine catalytic sites. Remarkably, the catalytic efficiencies of these COFs in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde correlate well with the number of accessible pyrrolidine sites within the frameworks. The COF featuring nearly one pyrrolidine moiety at each nodal point demonstrated excellent reaction yields and enantiomeric excess (ee) values, reaching up to 97 and 83%, respectively. The findings not only underscore the profound impact of a deliberately controlled chiral pore environment on the catalytic efficiencies of COFs but also offer a new perspective for the design and synthesis of advanced chiral COFs for efficient asymmetric catalysis.

2.
Fish Shellfish Immunol ; 144: 109301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110106

RESUMO

Mytilus unguiculatus is an important economic bivalve species with wide consumption and aquaculture value. Disease is one of the primary limiting factors in mussel aquaculture, thus understanding the response of different tissues of M. unguiculatus to pathogens is crucial for disease prevention and control. In this study, we investigated the physiological and transcriptomic responses of the gills, adductor muscle, and mantle of M. unguiculatus infected with Vibrio alginolyticus. The results showed that V. alginolyticus infection caused inflammation and tissue structure changes in the gill, adductor muscle and mantle of M. unguiculatus. Meanwhile, the activities of superoxide dismutase and catalase in the three tissues increased, while the total antioxidant capacity decreased, suggesting that M. unguiculatus have an activated defense mechanism against infection-induced oxidative stress, despite a compromised total antioxidant capacity. Transcriptomic studies reveal that infected M. unguiculatus exhibits upregulation of endocytosis, lysosome activity, cellular apoptosis, and immune-related signaling pathways, indicating that M. unguiculatus responds to pathogen invasion by upregulating efferocytosis. Compared with the gill and adductor muscle, the mantle had a higher level of mytimycin, mytilin and myticin, and the three tissues also increased the expression of mytimycin to cope with the invasion of pathogens. In addition, the analysis of genes related to taste transduction pathways and muscle contraction and relaxation found that after infection with V. alginolyticus, M. unguiculatus may reduce appetite by inhibiting taste transduction in the gill, while improving muscle contraction of the adductor muscle and keeping the shell closed, to resist further invasion of pathogens and reduce the risk of pathogen transmission in the population.


Assuntos
Mytilus , Vibrioses , Vibrio , Animais , Mytilus/genética , Vibrio alginolyticus/fisiologia , Antioxidantes , Vibrioses/veterinária , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069123

RESUMO

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of antioxidant gene expression in mammals, forming heterodimer complexes with small Maf proteins through its BZip domain. However, the underlying mechanism of Nrf2 action in molluscs remains poorly understood. The thick shell mussel, Mytilus coruscus, represents a model organism for the marine environment and molluscs interaction research. In this study, we used in silico cloning to obtain a small Maf homologue called McMafF_G_K from M. coruscus. McMafF_G_K possesses a typical BZip domain, suggesting its affiliation with the traditional small Maf family and its potential involvement in the Nrf2 signaling pathway. Transcriptional analysis revealed that McMafF_G_K exhibited a robust response to benzo[a]pyrene (Bap) in the digestive glands. However, this response was down-regulated upon interference with McMafF_G_K-siRNA. Interestingly, the expression levels of Nrf2, NAD(P)H: quinone oxidoreductase (NQO-1), and Glutathione Peroxidase (GPx), which are key players in oxidative stress response, showed a positive correlation with McMafF_G_K in digested adenocytes of M. coruscus. Furthermore, in vitro analysis of antioxidant capacity in digestive gland cells demonstrated that Bap exposure led to an increase in reactive oxygen species (ROS) levels, accompanied by an elevation in total antioxidant capacity (T-AOC), potentially counterbalancing the excessive ROS. Strikingly, transfection of McMafF_G_K siRNA resulted in a significant rise in ROS level and a down-regulation of T-AOC level. To validate the functional relevance of McMafF_G_K, a glutathione S-transferase (GST) pull-down assay confirmed its interaction with McNrf2, providing compelling evidence of their protein interaction. This study significantly contributes to our understanding of the functional role of McMafF_G_K in the Nrf2 signaling pathway and sheds light on its potential as a target for further research in oxidative stress response.


Assuntos
Antioxidantes , Bivalves , Animais , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Bivalves/genética , RNA Interferente Pequeno/metabolismo , Mamíferos/metabolismo
4.
Aquat Toxicol ; 264: 106728, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837868

RESUMO

Benzopyrene (Bap) is a major constituent of petroleum pollutants commonly found in aquatic environments, and its mutagenic and carcinogenic properties have adverse effects on aquatic organisms' development, growth, and reproduction. The antioxidant defense system element, NF-E2-related factor 2 (Nrf2), has been linked to the oxidative stress response in marine invertebrates exposed to toxic substances. In a previous study, a novel Nrf2 homologue, McNrf2, was identified in mussel Mytilus coruscus, a significant model marine molluscs in ecotoxicology studies. McNrf2 showed the potential to trigger an antioxidant defense against oxidative stress induced by Bap. Here, we employed an Nrf2 overexpression and inhibition model using SFN and ML385 as Nrf2 inducer and inhibitor, respectively. Next, immunofluorescence technique was used to evaluate the nuclear activation of Nrf2 induced by Bap-mediated oxidative stress. Transmission electron microscopy revealed that overexpression of Nrf2 could maintain the quantity and structural integrity of mitochondria, while flow cytometry analysis showed that Nrf2 could alleviate Bap-induced cellular apoptosis. These findings suggest that Nrf2 can protect molluscs from Bap-induced oxidative stress through the mitochondria and apoptosis pathways, providing a novel perspective on Nrf2's antioxidant function.


Assuntos
Antioxidantes , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Moluscos/metabolismo , Apoptose , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686445

RESUMO

The hard-shell mussel (Mytilus coruscus) is widespread in the temperate coastal areas of the northwest Pacific and holds a significant position in the shellfish aquaculture market in China. However, the natural resources of this species have been declining, and population genetic studies of M. coruscus are also lacking. In this study, we conducted whole-genome resequencing (WGR) of M. coruscus from eight different latitudes along the Chinese coast and identified a total of 25,859,986 single nucleotide polymorphism (SNP) markers. Our findings indicated that the genetic diversity of M. coruscus from the Zhoushan region was lower compared with populations from other regions. Furthermore, we observed that the evolutionary tree clustered into two primary branches, and the Zhangzhou (ZZ) population was in a separate branch. The ZZ population was partly isolated from populations in other regions, but the distribution of branches was not geographically homogeneous, and a nested pattern emerged, consistent with the population differentiation index (FST) results. To investigate the selection characteristics, we utilized the northern M. coruscus populations (Dalian and Qingdao) and the central populations (Zhoushan and Xiangshan) as reference populations and the southern ZZ population as the target population. Our selection scan analysis identified several genes associated with thermal responses, including Hsp70 and CYP450. These genes may play important roles in the adaptation of M. coruscus to different living environments. Overall, our study provides a comprehensive understanding of the genomic diversity of coastal M. coruscus in China and is a valuable resource for future studies on genetic breeding and the evolutionary adaptation of this species.


Assuntos
Mytilus , Animais , Povo Asiático , Variação Genética , Mytilus/genética , Sequenciamento Completo do Genoma
6.
Fish Shellfish Immunol ; 142: 109112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751644

RESUMO

The Nuclear factor Erythroid 2-related factor 2 (Nrf2) is the most important endogenous antioxidant factor in organisms, and it has been demonstrated that it exerts extensive control over the immune response by interacting with crucial innate immunity components directly or indirectly. Although Nrf2 has been widely confirmed to be involved in stress resistance in mammals and some fish, its contribution to mollusks oxidative stress resistance has not frequently been documented. In this investigation, total RNA was taken from the digestive gland of M. coruscus, and a cDNA library was constructed and screened using the GATEWAY recombination technology. The Nrf2 cDNA sequence of M. coruscus was cloned into the pGBKT7 vector to prepare the bait plasmid. Using yeast two-hybrid system, after auxotrophic medium screening, sequencing, and bioinformatics analysis, 13 binding proteins that interacted with Nrf2 were finally identified. They were QM-like protein, 40S ribosomal protein S4 (RPS4), ribosomal protein S2 (RPS2), ribosomal protein L12 (RPL12), EF1-alpha mRNA for elongation factor 1 alpha (eEF1-alpha), ferritin, alpha-amylase, trypsin, vdg3, period clock protein, cyclophilin A isoform 1 (CYP A), serine protease CFSP2, histone variant H2A.Z (H2A.Z). For a better understanding the physiological function of Nrf2 in animals and as a potential target for future research on protein roles in Nrf2 interactions, it is crucial to clarify these protein interactions.


Assuntos
Mytilus , Fator 2 Relacionado a NF-E2 , Animais , Técnicas do Sistema de Duplo-Híbrido , Fator 2 Relacionado a NF-E2/genética , Mytilus/genética , Biblioteca Gênica , DNA Complementar/genética , Mamíferos
7.
Toxics ; 11(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37505520

RESUMO

In recent years, microplastics have been of great concern in environmental and health research. In field surgeries and laboratory investigations, research interests were focused on the retention of microplastics inside of animals by ingestion and the series of negative effects after that. However, such large plastic debris and filaments are hardly eaten by small animals, like zooplankton, planktonic larvae, etc. In this study, the surface contact between plastic filaments contaminated with polycyclic aromatic hydrocarbons (PAHs) and mussel pediveliger larvae has been investigated to figure out the effects of "non-digestive tract route of exposure" on subject animals. In a 1600 mL artificial seawater medium, high mortalities of mussel larvae were recorded after being exposed to two PAHs-contaminated (benzo[α]pyrene (BaP) and phenanthrene (Phe)) filaments for 5 days, 68.63% for BaP and 56.45% for Phe on average. We suggest that the surface contact was the dominant pathway to transfer PAHs from contaminated filaments to larvae and that the risk of contaminated plastic ropes transferring hydrophobic organic compounds (HOCs) to larvae in mussel aquaculture should be taken seriously.

8.
Animals (Basel) ; 13(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37508026

RESUMO

Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, we conducted an analysis of enzyme activity and TMT-labelled based proteomic in the digestive gland tissue of Mytilus coruscus after exposure to high temperatures. Our results showed that the activities of superoxide dismutase, acid phosphatase, lactate dehydrogenase, and cellular content of lysozyme were significantly changed in response to heat stress. Furthermore, many differentially expressed proteins involved in nutrient digestion and absorption, p53, MAPK, apoptosis, and energy metabolism were activated post-heat stress. These results suggest that M. coruscus can respond to heat stress through the antioxidant system, the immune system, and anaerobic respiration. Additionally, M. coruscus may use fat, leucine, and isoleucine to meet energy requirements under high temperature stress via the TCA cycle pathway. These findings provide a useful reference for further exploration of the response mechanism to heat stress in marine mollusks.

9.
Sci Total Environ ; 903: 165785, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499827

RESUMO

The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.

10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(4): 367-370, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37308190

RESUMO

OBJECTIVE: To investigate the survival of patients with cardiac arrest and cardiopulmonary resuscitation (CA-CPR), and to analyze the factors influencing survival at 30 days after restoration of spontaneous circulation (ROSC). METHODS: A retrospective cohort study was conducted. Clinical data of 538 patients with CA-CPR admitted to the People's Hospital of Ningxia Hui Autonomous Region from January 2013 to September 2020 were enrolled. The gender, age, underlying disease, cause of CA, type of CA, initial rhythm, presence or absence of endotracheal intubation, defibrillation, use of epinephrine, and 30-day survival rate of patients were collected. The etiology of CA and 30-day survival rate among patients with different ages were compared, as well as the clinical data between patients who survived and died at 30 days after ROSC were also compared. Multivariate Logistic regression was used to analyze the relevant factors affecting the 30-day survival rate of patients. RESULTS: Among 538 patients with CA-CPR, 67 patients with incomplete information were excluded, and 471 patients were enrolled. Among 471 patients, 299 were males and 172 were females. Aged from 0 to 96 years old, 23 patients (4.9%) were < 18 years old, 205 patients (43.5%) were 18 to 64 years old, and 243 patients (51.6%) were ≥ 65 years old. 302 cases (64.1%) achieved ROSC, and 46 patients (9.8%) survived for more than 30 days. The 30-day survival rate of patients aged < 18 years old, 18-64 years old and ≥ 65 years old was 8.7% (2/23), 12.7% (26/205) and 7.4% (18/243), respectively. The main causes of CA in patients younger than 18 years were severe pneumonia (13.1%, 3/23), respiratory failure (13.1%, 3/23), and trauma (13.1%, 3/23). The main causes were acute myocardial infarction (AMI; 24.9%, 51/205), respiratory failure (9.8%, 20/205), and hypoxic brain injury (9.8%, 20/205) in patients aged 18-64 years old, and AMI (24.3%, 59/243) and respiratory failure (13.6%, 33/243) in patients aged ≥ 65 years old. Univariate analysis results revealed that the 30-day survival rate of patients with CA-CPR may be related to the the cause of CA was AMI, initial rhythm was ventricular tachycardia/ventricular fibrillation, endotracheal intubation and epinephrine. Multivariate Logistic regression analysis results showed that CA was caused by AMI [odds ratio (OR) = 0.395, 95% confidence interval (95%CI) was 0.194-0.808, P = 0.011] and endotracheal intubation (OR = 0.423, 95%CI was 0.204-0.877, P = 0.021) was a protective factor for 30 days of survival after ROSC in patients with CA-CPR. CONCLUSIONS: The 30-day survival rate of CA-CPR patients was 9.8%. The 30-day survival rate of CA-CPR patients with AMI after ROSC is higher than that of patients with other CA causes, and early endotracheal intubation can improve the prognosis of patients.


Assuntos
Parada Cardíaca , Feminino , Masculino , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Taxa de Sobrevida , Hospitais , Epinefrina , Fibrilação Ventricular
11.
Fish Shellfish Immunol ; 138: 108868, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263550

RESUMO

Toll-like receptors (TLRs) are crucial players in immune recognition and regulation, with aberrant activation leading to autoimmune, chronic inflammatory, and infectious diseases. MicroRNAs (miRNAs) have been shown to regulate gene expression at transcriptional and post-transcriptional levels. While miRNA-mediated regulation of TLR signaling has been studied in mammals, the underlying mechanisms of TLR-miRNA interactions in molluscs remain unclear. In a previous study, one of the TLR genes potentially targeted by miRNAs was identified and named McTLR-like1. McTLR-like1 was later found to be targeted by miRNA Mc-novel_miR_196 through bioinformatic prediction. In this study, we aim to experimentally determine the interaction between McTLR-like1 and Mc-novel_miR_196, as well as their functional role in the innate immune response of molluscs. The results showed that the expression of Mc-novel_miR_196 was suppressed, while the expression of McTLR-like1 was enhanced in M. coruscus hemocytes treated with lipopolysaccharide (LPS). Moreover, in vitro assays demonstrated that Mc-novel_miR_196 directly targets the 5' UTR of McTLR-like1 and leads to the down-regulation of proinflammatory cytokines in hemocytes. In addition, co-transfection experiments confirmed that Mc-novel_miR_196 inhibits McTLR-like1 and inhibits the expression of proinflammatory cytokines. The Tunel assay also showed that Mc-novel_miR_196 inhibited apoptosis in hemocytes induced by LPS. Our findings suggest that microRNA Mc-novel_miR_196 acts as a regulator of innate immunity in M. coruscus by targeting McTLR-like1 and inhibiting inflammatory response and apoptosis. These results provide further insights into the complex molecular mechanisms underlying TLR signaling in molluscs.


Assuntos
MicroRNAs , Mytilus , Animais , MicroRNAs/genética , Lipopolissacarídeos/farmacologia , Imunidade Inata/genética , Citocinas , Apoptose , Mamíferos
12.
Sci Total Environ ; 891: 164415, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236442

RESUMO

Polybrominated diphenyl ethers (PBDEs) are one of the most used halogenated flame retardants worldwide, and exert neurotoxicity, reproductive toxicity, endocrine interference, and carcinogenic effects on organisms. However, there are insufficient studies on the physical and immune defense at the individual level of mussels under different food conditions. To explore the defense strategy and individual health status, the thick-shelled mussels Mytilus coruscus were exposed to different BDE-47 concentrations (0, 0.1 and 10 µg/L) and nutritional conditions (feeding and starvation) for 21 days. The results showed that BDE-47 exposure and starvation significantly decreased the number of byssus threads (NBT), adhesion, and condition index (CI) of mussels, whereas increased the reactive oxygen species (ROS) production and the combined stress further declined the CI. BDE-47 exposure and starvation induced decreased adhesive capability and healthy state along with oxidative lesions in mussels. The downregulation gene expression of foot adhesion proteins (mfp-2/3/4/5/6) under starvation or combined exposure also proved the reduced adhesion of mussels. However, up-regulated mfp-1 and pre-collagens proteins (preCOL-D/P/NG) indicated mussels would adjust energy allocation to enhance the strength and extensibility of byssal threads for compensating reduced adhesion and CI. As global climate change and organic pollution have dramatically impacted the ocean, hazardous substances and the fluctuated primary productivity have frequently co-occurred, which will affect the structure of coastal biomes and fishery production.


Assuntos
Retardadores de Chama , Mytilus , Animais , Éteres Difenil Halogenados/toxicidade , Mytilus/fisiologia , Proteínas/farmacologia , Ecossistema , Retardadores de Chama/toxicidade
13.
Genes (Basel) ; 14(4)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37107667

RESUMO

The circular mitochondrial genome of Mytilisepta virgata spans 14,713 bp, which contains 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. Analysis of the 13 PCGs reveals that the mitochondrial gene arrangement of Mytilisepta is relatively conserved at the genus level. The location of the atp8 gene in Mytilisepta keenae differs from that of other species. However, compared with the putative molluscan ancestral gene order, M. virgata exhibits a high level of rearrangement. We constructed phylogenetic trees based on concatenated 12 PCGs from Mytilidae. As a result, we found that M. virgata is in the same clade as other Mytilisepta spp. The result of estimated divergence times revealed that M. virgata and M. keenae diverged around the early Paleogene period, although the oldest Mytilisepta fossil was from the late or upper Eocene period. Our results provide robust statistical evidence for a sister-group relationship within Mytilida. The findings not only confirm previous results, but also provide valuable insights into the evolutionary history of Mytilidae.


Assuntos
Genoma Mitocondrial , Mytilidae , Animais , Filogenia , Mytilidae/genética , Genoma Mitocondrial/genética , Evolução Biológica , Rearranjo Gênico
14.
Front Physiol ; 14: 1150521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064882

RESUMO

Mytilus coruscus is a dominant shellfish in the Yangtze estuary and its adjacent sea area. Food deprivation often occurs during their growth due to fluctuations in algal abundance caused by seasonal freshwater flushing and high-density aquaculture mode. To investigate the coping strategies of M. coruscus to starvation stress, electron microscopy and differential proteomic analysis were performed on the critical feeding organ gill of the mussels after 9 days of starvation. The electron microscopy results showed that the cilia of the mussel gills were dissolved, and the gaps between gill filaments widened under starvation. Differential proteomic analysis revealed that phagocytosis-related proteins such as ATPeV1E, ATPeV1C, LAMP1_2 and CTSL were significantly upregulated, and the phagocytosis pathway was significantly enriched (p < 0.05). In addition, the corin content in gill and myeloperoxidase level as well as the number of dead cells in blood were both significantly increased (p < 0.05). What's more, proteomic data suggested that immune maintenance, cellular transport and metabolism related pathways were significantly enriched, which illustrated an immune and metabolism responses under starvation. This study reveals for the first time that phagocytosis functions as an essential strategy for M. coruscus to cope with starvation, which provides new scientific knowledge and a theoretical basis for understanding the adaptation mechanisms of mussel to starvation and for rational optimization of mussel culture patterns.

15.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983002

RESUMO

Interleukin-17 (IL-17) represents a class of proinflammatory cytokines involved in chronic inflammatory and degenerative disorders. Prior to this study, it was predicted that an IL-17 homolog could be targeted by Mc-novel_miR_145 to participate in the immune response of Mytilus coruscus. This study employed a variety of molecular and cell biology research methods to explore the association between Mc-novel_miR_145 and IL-17 homolog and their immunomodulatory effects. The bioinformatics prediction confirmed the affiliation of the IL-17 homolog with the mussel IL-17 family, followed by quantitative real-time PCR assays (qPCR) to demonstrate that McIL-17-3 was highly expressed in immune-associated tissues and responded to bacterial challenges. Results from luciferase reporter assays confirmed the potential of McIL-17-3 to activate downstream NF-κb and its targeting by Mc-novel_miR_145 in HEK293 cells. The study also produced McIL-17-3 antiserum and found that Mc-novel_miR_145 negatively regulates McIL-17-3 via western blotting and qPCR assays. Furthermore, flow cytometry analysis indicated that Mc-novel_miR_145 negatively regulated McIL-17-3 to alleviate LPS-induced apoptosis. Collectively, the current results showed that McIL-17-3 played an important role in molluscan immune defense against bacterial attack. Furthermore, McIL-17-3 was negatively regulated by Mc-novel_miR_145 to participate in LPS-induced apoptosis. Our findings provide new insights into noncoding RNA regulation in invertebrate models.


Assuntos
MicroRNAs , Mytilus , Humanos , Animais , Interleucina-17/genética , Lipopolissacarídeos/farmacologia , Células HEK293 , NF-kappa B , MicroRNAs/genética , Imunidade Inata/genética , Apoptose/genética
16.
Biochem Genet ; 61(5): 1704-1726, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36745306

RESUMO

The extant marine mussels which belong to the Mytiloidea are widespread species inhabiting mostly coastal waters, with some distributed in the deep sea. To clarify the classification systems and phylogenetic relationships range from genus to family level within Mytiloidea, new sequence was used in a phylogenetic analysis including all the available Mytiloidea mitochondrial genomes. In this study, the complete mitochondrial genome of Vignadula atrata is 15,624 bp in length and contains 12 protein-coding genes (PCGs, atp8 is absent), two ribosomal RNA genes, and 22 transfer RNA genes. Phylogenetic analysis based on 12 PCGs showed that it has a close relationship to Bathymodiolus. The analysis of gene rearrangements in the Pteriomorphia showed that the arrangements are highly variable across species, novel gene rearrangements were found within Mytiloidea. The V. atrata mitogenome was provided in detail, with notes on the sequence and a key to the species of Vignadula. This study provides a perspective on the taxonomic histories of the marine mussels and refines the unclear relationship between the origin and evolution of species in Mytiloidea within Bivalvia.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Filogenia , Bivalves/genética , RNA de Transferência/genética , Rearranjo Gênico
17.
Artigo em Inglês | MEDLINE | ID: mdl-36731219

RESUMO

As a result of global warming, the Mytilus coruscus living attached in the intertidal zone experience extreme and fluctuating changes in temperature, and extreme temperature changes are causing mass mortality of intertidal species. This study explores the transcriptional response of M. coruscus at different temperatures (18 °C, 26 °C, and 33 °C) and different times (0, 12, and 24 h) of action by analyzing the potential temperature of the intertidal zone. In response to high temperatures, several signaling pathways in M. coruscus, ribosome, endocytosis, endoplasmic reticulum stress, protein degradation, and lysosomes, interact to counter the adverse effects of high temperatures on protein homeostasis. Increased expression of key genes, including heat shock proteins (Hsp70, Hsp20, and Hsp110), Lysosome-associated membrane glycoprotein (LAMP), endoplasmic reticulum chaperone (BiP), and baculoviral IAP repeat-containing protein 7 (BIRC7), may further mitigate the effects of heat stress and delay mortality in M. coruscus. These results reveal changes in multiple signaling pathways involved in protein degradation during high-temperature stress, which will contribute to our overall understanding of the molecular mechanisms underlying the response of M. coruscus to high-temperature stress.


Assuntos
Mytilus , Animais , Mytilus/genética , Temperatura , Transcriptoma , Proteólise , Transdução de Sinais
18.
Aquat Toxicol ; 254: 106367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436309

RESUMO

Plastic pollution represents one of the most severe marine environmental issues today. In the present study, mussel Mytilus coruscus, was selected as the model organism to probe the toxic effects of acute exposure to different sizes of plastic particles using integrated transcriptomic techniques and histological and biochemical analysis. Nanoplastics (NPs) were efficiently ingested by mussels, thereby inducing a severe inflammatory response. Although no distinct aggregation of microplastics (MPs) was observed, a slight inflammatory response has still occurred. Biochemical analysis revealed a significant up-regulation of biomarkers after exposure to plastic particles. Further, NPs caused more ROS production and higher T-AOC level than MPs. Transcriptomic sequencing was performed, and these differentially expressed genes after MNPs exposure were mostly enriched in pathways involved in stress and immune response. Notably, a contrast expression, substantial upregulation in MPs treatment and downregulation in NPs treatment of specific genes include in these pathways were revealed. Collectively, these results indicated that acute exposure to NPs is more toxic than MPs. Additionally, MPs exposure perhaps caused the impairment of olfactory function and neurotoxicity to mussels. These data provided some new clues for the elucidating of ecotoxicological mechanisms underlying plastic particles exposure.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Plásticos , Transcriptoma
19.
Genes (Basel) ; 13(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36360180

RESUMO

Pilumnopeus makianus is a crab that belongs to Pilumnidae, Brachyura. Although many recent studies have focused on the phylogeny of Brachyura, the internal relationships in this clade are far from settled. In this study, the complete mitogenome of P. makianus was sequenced and annotated for the first time. The length of the mitogenome is 15,863 bp, and includes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), and 2 ribosomal RNA genes (rRNA). The mitogenome exhibits a high AT content (72.26%), with a negative AT-skew (-0.01) and a GC-skew (-0.256). In the mitogenome of P. makianus, all the tRNA genes are folded into the typical cloverleaf secondary structure, except trnS1 (TCT). A comparison with the ancestors of Brachyura reveals that gene rearrangement occurred in P. makianus. In addition, phylogenetic analyses based on thirteen PCGs indicated that P. makianus, Pilumnus vespertilio, and Echinoecus nipponicus clustered into a well-supported clade that supports the monophyly of the family Pilumnidae. These findings enabled a better understanding of phylogenetic relationships within Brachyura.


Assuntos
Braquiúros , Genoma Mitocondrial , Animais , Filogenia , Braquiúros/genética , Rearranjo Gênico , RNA de Transferência/genética
20.
Fish Shellfish Immunol ; 131: 612-623, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272520

RESUMO

Mytilus shows great immune resistance to various bacteria from the living waters, indicating a complex immune recognition mechanism against various microbes. Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Therefore, eight PGRPs were identified from the gill transcriptome of Mytilus coruscus. The sequence features, expression pattern in various organs and larval development stages, and microbes induced expression profiles of these Mytilus PGRPs were determined. Our data revealed the constitutive expression of PGRPs in various organs with relative higher expression level in immune-related organs. The expression of PGRPs is developmentally regulated, and most PGRPs are undetectable in larvae stages. The expression level of most PGRPs was significantly increased with in vivo microbial challenges, showing strong response to Gram-positive strain in gill and digestive gland, strong response to Gram-negative strain in hemocytes, and relative weaker response to fungus in the three tested organs. In addition, the function analysis of the representative recombinant expressed PGRP (rMcPGRP-2) confirmed the antimicrobial and agglutination activities, showing the immune-related importance of PGRP in Mytilus. Our work suggests that Mytilus PGRPs can act as pattern recognition receptors to recognize the invading microorganisms and the antimicrobial effectors during the innate immune response of Mytilus.


Assuntos
Mytilus , Animais , Proteínas de Transporte , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...